
The PCP question

I Which (positive) elements in a C*-algebra are positive
combinations of projections?(that is, linear combinations with
positive coefficients.)

We were motivated by earlier work on:

I Which (positive) elements in a C*-algebra are the sum of
projections? (Question still open in B(H). Recent interest due
to frame theory.)

Of course, we first need to know:

I Which elements in a C*-algebra are linear combinations of
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What’s known in B(H)

I Fillmore (1967) Every operator in B(H) is a linear
combination of 257 projections. Pearcy & Topping (1967),
Paszkiewicz (1980), Matsumoto (1984) reduced the number
to 10 projections.

I Fillmore (1967) Positive invertibles are PCP.

I A different proof by Fong & Murphy (1985) using “bounds on
the coefficients” of the linear combinations.

I Fillmore’s observation on PCP (1967): compact operators
with infinite rank are not PCP. Indeed, if b ∈ K (H)+ is PCP in

B(H) then all the projections must be finite and hence its range

projection Rb must be finite.

I Fong & Murphy (1985): This is the only exception.
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What’s known in W*-algebras

I Pearcy and Topping (1967), Fack&De La Harpe (1980),
Goldstein&Paszkiewicz (1992): all elements in a W*-algebra
are linear combination of projections iff the algebra has no
finite type I direct summand with infinite dimensional center.

I Bikchentaev (2005) Every positive invertible element in a
W*-algebra without finite type I direct summands with infinite
dimensional center is a positive combination of projections.
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More recent in W*-algebras

KNZ (T-AMS 2012?)The following positive elements are PCP:

I Type II1 or type III σ-finite factors (or finite direct sums): all.

I Type II∞ factors (or finite direct sums): if either Rb is finite
or b is not in the Breuer ideal of compact operators. Similar to

B(H).

I “Large center”: the central essential spectrum must be
bounded away from 0.
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What’s known in C*-algebras

The following unital simple C*-algebras are the span of their
projections (mostly work by Marcoux (1998-2010)):

I purely infinite C*-algebras;

I with proper projections but no tracial states;

I real rank zero with unique tracial state satisfying strict
comparison of projections (τ(p) < τ(q)⇒ p ≺ q);

I AF-algebras, AT-algebras, or AH-algebras (if with bounded
dimension growth) of real rank zero and finitely many
extremal tracial states.



The purely infinite case-PCP
A a σ-unital purely infinite simple C*-algebra.

Theorem (KNZ, P-AMS (2011))

Every positive element of A is PCP.

Theorem (ibid))

I Every positive element of the multiplier M(A) is PCP.

I If b ∈M(A)+ and ‖b‖ess > 1, then b is a finite sum of
projections.

Theorem (KNZ, P-AMS (2012))

If K0(A) is a torsion group and b ∈ A+, ‖b‖ > 1 then b is a finite
sum of projections.
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Finite C*-algebras: the hypotheses

I A unital,

simple,
real rank zero,
stable rank one,
separable;

I the tracial state space T (A) is non-empty and has finitely
many extreme points; (recall that T (A) is convex and w*-cpt);

I strict comparison of projections:

τ(p) < τ(q) ∀τ ∈ T (A) ⇒ p - q.
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Finite C*-algebras: linear combinations

A a C*-algebra with the listed properties/

Theorem
A is the linear span of it projections with “control on the
coefficients”. That is, there is a constant V0 s.t. for every b ∈ A,
∃λj ∈ C, pj ∈ A projections s.t

b =
∑n

1 λjpj and
∑n

1 |λj | ≤ V0‖b‖.

Question
If A is the span of its projections, does control of the coefficients
follow automatically?
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Why control of the coefficients?

Lemma (proof as in Fong & Murphy’s (1985) for B(H))

If a C*-algebra A+ is the span of it projections with control on the
coefficients and has RR(A) = 0, then every positive invertible is
PCP.

Beyond invertibles:

Lemma
Let A have the property that positive invertibles in any corner rAr
are PCP. If b := αp ⊕ a with α > ‖a‖ and a = qaq ≥ 0, q - p,
then b is PCP.

This lemma is the essential tool for attacking the general PCP
problem.
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First step: commutators

Theorem
If b ∈ A and τ(b) = 0 ∀τ ∈ T (A), then b is the sum of 2
commutators (with control on their norms.)

This theorem holds even when card (Ext(T (A)) =∞.
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Ingredients in the proof

I Embed in A a unital simple AH-algebra C with real rank zero
and dimension growth bounded by 3 and same K-invariants
(Lin (2001), Elliott& Gong, Gong (1996, 1997,1998)).
(Here is the only place where we use separability.)

I Extend the Fack (1982), Thomsen (1994) construction to this
inductive limit case so to approximate b by a bounded number
of commutators.

I Use the Marcoux (2002, 2006) machinery to express b as the
sum of commutators and then reduce their number to two.
(Still keep control on the norms.)
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From commutators to projections

I Marcoux (2002) proved that if in a C*-algebra there exist
three mutually orthogonal projections p1, p2 and p3 such that
1 = p1 + p2 + p3 and pi - 1− pi for 1 ≤ i ≤ 3, then every
commutator is a linear combination of 84 projections, with
control on the coefficients. (Commutators = sums of certain

nilpotents of order two=sums of idempotents = (by Davidson)

=linear combinations of projections)

This condition is easily satisfied in our case. Thus so far we
have:

I every b ∈ A s.t. τ(b) = 0 for every tracial state τ is a linear
combination of projections with control on the coefficients.
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Beyond zero trace

I If there is a unique tracial state τ , then
b = τ(b)1 + (b − τ(b)1) is a linear combination of projections
(just one...) plus a zero-trace element.

I Using the density of Ko(A) in the continuous affine functions
on T (A) (Blackadar (1982)) we get:

Lemma
If card(Ext(T (A)) <∞ then every element in A is the sum of
linear combination of projections plus an element in the kernel of
all the traces.

I These 3 steps conclude the proof. To recap:
b= linear combination of projections + c , τ(c) = 0∀τ inT (A);
c = [x1, y1] + [x2, y2];
[xi , yi ]= linear combination of projections;

and all that with control of the coefficients.
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Infinitely many extremal traces?

The condition that card(Ext(T (A)) <∞ is essential:

Proposition

If card(Ext(T (A)) =∞ and the collection D(A) of Murray-von
Neumann equivalence classes of projections of A is countable, then
A is not the linear span of its projections.

The proof mimics the one that a Hamel basis of an infinite
separable Banach space cannot be countable.
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Finite nonunital C*-algebras: obstruction to PCP

I When b ∈ A, its range projection Rb exists in A∗∗ (it is an
open projection).

I Every (finite, faithful) trace τ has an extension τ̄ to a (not
necessarily faithful nor finite) tracial weight on (A∗∗)+

(Combes(1968)- Ortega, Rordam, Thiel (2011))

I The condition that τ̄(Rb) <∞ ∀τ ∈ T (A) is necessary for b
to be a linear combination of projections. Indeed:

b =
∑
λjpj ⇒ τ̄(Rb) ≤ τ̄(

∨
pj) ≤

∑
τ(pj) <∞ ∀τ ∈ T (A)

I The condition is also sufficient. But first, we need the PCP
result.
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Finite C*-algebras: N&S condition for PCP

Theorem
Let A be σ-unital, with all properties as above and
card(Ext(T (A)) <∞. Then b ∈ A+ is PCP if and only if
τ̄(Rb) <∞ ∀τ ∈ T (A).(Always true if A is unital.)

Corollary

With A as above, b ∈ A is a linear combination of projections in A

if and only if τ̄(Rb) <∞ ∀τ ∈ T (A).
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Ingredients in the proof, part I

We can work in a corner where the “identity is not too far from
the range projection”.

Lemma
If τ̄(Rb) <∞ ∀τ ∈ T (A) then there is a trace preserving
isomorphism

Ψ : her(b)→ Ψ(her(b)) ⊂ rAr for some r ∈ A, τ(r) < 2τ̄(Rb).

Why solving PCP question first? Notice that

I decomposing Ψ(b) into a PCP in rAr , necessarily in
Ψ(her(b)) gives a PCP decomposition of b;

I decomposing Ψ(b) into a linear combination of projections in
rAr does not yield a decomposition of b.
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Ingredients in the proof, part II

I Previous lemma permits to embed b into a unital algebra so
that τ̄(Nb) < τ̄(Rb) ∀τ ∈ T (A).

I By Brown’s interpolation theorem find projections p ⊥ q in
T (A) with Nb ≤ q - p ≤ Rb

I Use the key lemma that we have seen before:

Lemma
Let A have the property that positive invertibles in any corner rAr
are PCP. If b := αp ⊕ a with α > ‖a‖ and a = qaq ≥ 0, q - p,
then b is PCP.

I Plus more work - the proof is technical.
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