The PCP question

- Which (positive) elements in a C*-algebra are positive combinations of projections?(that is, linear combinations with positive coefficients.)

The PCP question

- Which (positive) elements in a C*-algebra are positive combinations of projections?(that is, linear combinations with positive coefficients.)

We were motivated by earlier work on:

- Which (positive) elements in a C*-algebra are the sum of projections? (Question still open in $B(H)$. Recent interest due to frame theory.)

The PCP question

- Which (positive) elements in a C^{*}-algebra are positive combinations of projections?(that is, linear combinations with positive coefficients.)

We were motivated by earlier work on:

- Which (positive) elements in a C*-algebra are the sum of projections? (Question still open in $B(H)$. Recent interest due to frame theory.)

Of course, we first need to know:

- Which elements in a C*-algebra are linear combinations of projections?

What's known in $B(H)$

- Fillmore (1967) Every operator in $B(H)$ is a linear combination of 257 projections. Pearcy \& Topping (1967), Paszkiewicz (1980), Matsumoto (1984) reduced the number to 10 projections.

What's known in $B(H)$

- Fillmore (1967) Every operator in $B(H)$ is a linear combination of 257 projections. Pearcy \& Topping (1967), Paszkiewicz (1980), Matsumoto (1984) reduced the number to 10 projections.
- Fillmore (1967) Positive invertibles are PCP.

What's known in $B(H)$

- Fillmore (1967) Every operator in $B(H)$ is a linear combination of 257 projections. Pearcy \& Topping (1967), Paszkiewicz (1980), Matsumoto (1984) reduced the number to 10 projections.
- Fillmore (1967) Positive invertibles are PCP.
- A different proof by Fong \& Murphy (1985) using "bounds on the coefficients" of the linear combinations.

What's known in $B(H)$

- Fillmore (1967) Every operator in $B(H)$ is a linear combination of 257 projections. Pearcy \& Topping (1967), Paszkiewicz (1980), Matsumoto (1984) reduced the number to 10 projections.
- Fillmore (1967) Positive invertibles are PCP.
- A different proof by Fong \& Murphy (1985) using "bounds on the coefficients" of the linear combinations.
- Fillmore's observation on PCP (1967): compact operators with infinite rank are not PCP. Indeed, if $b \in K(H)^{+}$is $P C P$ in $B(H)$ then all the projections must be finite and hence its range projection R_{b} must be finite.

What's known in $B(H)$

- Fillmore (1967) Every operator in $B(H)$ is a linear combination of 257 projections. Pearcy \& Topping (1967), Paszkiewicz (1980), Matsumoto (1984) reduced the number to 10 projections.
- Fillmore (1967) Positive invertibles are PCP.
- A different proof by Fong \& Murphy (1985) using "bounds on the coefficients" of the linear combinations.
- Fillmore's observation on PCP (1967): compact operators with infinite rank are not PCP. Indeed, if $b \in K(H)^{+}$is $P C P$ in $B(H)$ then all the projections must be finite and hence its range projection R_{b} must be finite.
- Fong \& Murphy (1985): This is the only exception.

What's known in W^{*}-algebras

- Pearcy and Topping (1967), Fack\&De La Harpe (1980), Goldstein\&Paszkiewicz (1992): all elements in a W*-algebra are linear combination of projections iff the algebra has no finite type I direct summand with infinite dimensional center.

What's known in W^{*}-algebras

- Pearcy and Topping (1967), Fack\&De La Harpe (1980), Goldstein\&Paszkiewicz (1992): all elements in a W*-algebra are linear combination of projections iff the algebra has no finite type I direct summand with infinite dimensional center.
- Bikchentaev (2005) Every positive invertible element in a W*-algebra without finite type I direct summands with infinite dimensional center is a positive combination of projections.

More recent in W^{*}-algebras

KNZ (T-AMS 2012?)The following positive elements are PCP:

- Type II_{1} or type III σ-finite factors (or finite direct sums): all.

More recent in W^{*}-algebras

KNZ (T-AMS 2012?)The following positive elements are PCP:

- Type II_{1} or type III σ-finite factors (or finite direct sums): all.
- Type II_{∞} factors (or finite direct sums): if either R_{b} is finite or b is not in the Breuer ideal of compact operators. Similar to $B(H)$.

More recent in W^{*}-algebras

KNZ (T-AMS 2012?)The following positive elements are PCP:

- Type II_{1} or type III σ-finite factors (or finite direct sums): all.
- Type II_{∞} factors (or finite direct sums): if either R_{b} is finite or b is not in the Breuer ideal of compact operators. Similar to $B(H)$.
- "Large center" : the central essential spectrum must be bounded away from 0 .

What's known in C*-algebras

The following unital simple C*-algebras are the span of their projections (mostly work by Marcoux (1998-2010)):

- purely infinite C^{*}-algebras;
- with proper projections but no tracial states;
- real rank zero with unique tracial state satisfying strict comparison of projections $(\tau(p)<\tau(q) \Rightarrow p \prec q)$;
- AF-algebras, AT-algebras, or AH-algebras (if with bounded dimension growth) of real rank zero and finitely many extremal tracial states.

The purely infinite case-PCP

\mathcal{A} a σ-unital purely infinite simple C^{*}-algebra.

The purely infinite case-PCP

\mathcal{A} a σ-unital purely infinite simple C^{*}-algebra.

Theorem (KNZ, P-AMS (2011))
Every positive element of \mathcal{A} is PCP.

The purely infinite case-PCP

\mathcal{A} a σ-unital purely infinite simple C* *-algebra.

Theorem (KNZ, P-AMS (2011))
Every positive element of \mathcal{A} is PCP.

Theorem (ibid))

- Every positive element of the multiplier $\mathcal{M}(\mathcal{A})$ is PCP.

The purely infinite case-PCP

\mathcal{A} a σ-unital purely infinite simple C^{*}-algebra.

Theorem (KNZ, P-AMS (2011))
Every positive element of \mathcal{A} is PCP.

Theorem (ibid))

- Every positive element of the multiplier $\mathcal{M}(\mathcal{A})$ is $P C P$.
- If $b \in \mathcal{M}(\mathcal{A})^{+}$and $\|b\|_{\text {ess }}>1$, then b is a finite sum of projections.

The purely infinite case-PCP

\mathcal{A} a σ-unital purely infinite simple C^{*}-algebra.

Theorem (KNZ, P-AMS (2011))
Every positive element of \mathcal{A} is PCP.

Theorem (ibid))

- Every positive element of the multiplier $\mathcal{M}(\mathcal{A})$ is PCP.
- If $b \in \mathcal{M}(\mathcal{A})^{+}$and $\|b\|_{\text {ess }}>1$, then b is a finite sum of projections.

Theorem (KNZ, P-AMS (2012))
If $K_{0}(\mathcal{A})$ is a torsion group and $b \in \mathcal{A}^{+},\|b\|>1$ then b is a finite sum of projections.

Finite C*-algebras: the hypotheses

- \mathcal{A} unital,

Finite C*-algebras: the hypotheses

- \mathcal{A} unital, simple,

Finite C*-algebras: the hypotheses

- \mathcal{A} unital, simple, real rank zero,

Finite C*-algebras: the hypotheses

- \mathcal{A} unital, simple, real rank zero, stable rank one,

Finite C*-algebras: the hypotheses

- \mathcal{A} unital, simple, real rank zero, stable rank one, separable;

Finite C*-algebras: the hypotheses

- \mathcal{A} unital, simple, real rank zero, stable rank one, separable;
- the tracial state space $T(\mathcal{A})$ is non-empty and has finitely many extreme points; (recall that $T(\mathcal{A})$ is convex and w^{*}-cpt);

Finite C^{*}-algebras: the hypotheses

- \mathcal{A} unital, simple, real rank zero, stable rank one, separable;
- the tracial state space $T(\mathcal{A})$ is non-empty and has finitely many extreme points; (recall that $T(\mathcal{A})$ is convex and w^{*}-cpt);
- strict comparison of projections:

$$
\tau(p)<\tau(q) \forall \tau \in T(\mathcal{A}) \Rightarrow p \precsim q .
$$

Finite C*-algebras: linear combinations

Finite C*-algebras: linear combinations

\mathcal{A} a C^{*}-algebra with the listed properties/
Theorem
\mathcal{A} is the linear span of it projections with "control on the coefficients". That is, there is a constant V_{0} s.t. for every $b \in \mathcal{A}$, $\exists \lambda_{j} \in \mathbb{C}, p_{j} \in \mathcal{A}$ projections s.t

$$
b=\sum_{1}^{n} \lambda_{j} p_{j} \quad \text { and } \quad \sum_{1}^{n}\left|\lambda_{j}\right| \leq V_{0}\|b\| .
$$

Finite C*-algebras: linear combinations

\mathcal{A} a C^{*}-algebra with the listed properties/
Theorem
\mathcal{A} is the linear span of it projections with "control on the coefficients". That is, there is a constant V_{0} s.t. for every $b \in \mathcal{A}$, $\exists \lambda_{j} \in \mathbb{C}, p_{j} \in \mathcal{A}$ projections s.t

$$
b=\sum_{1}^{n} \lambda_{j} p_{j} \quad \text { and } \quad \sum_{1}^{n}\left|\lambda_{j}\right| \leq V_{0}\|b\| .
$$

Question
If \mathcal{A} is the span of its projections, does control of the coefficients follow automatically?

Why control of the coefficients?

Lemma (proof as in Fong \& Murphy's (1985) for $B(H)$)
If a C^{*}-algebra \mathcal{A}^{+}is the span of it projections with control on the coefficients and has $R R(\mathcal{A})=0$, then every positive invertible is $P C P$.

Why control of the coefficients?

Lemma (proof as in Fong \& Murphy's (1985) for $B(H)$)
If a C^{*}-algebra \mathcal{A}^{+}is the span of it projections with control on the coefficients and has $R R(\mathcal{A})=0$, then every positive invertible is PCP.

Beyond invertibles:

Lemma
Let \mathcal{A} have the property that positive invertibles in any corner rAr are $P C P$. If $b:=\alpha p \oplus a$ with $\alpha>\|a\|$ and $a=q a q \geq 0, q \precsim p$, then b is $P C P$.

Why control of the coefficients?

Lemma (proof as in Fong \& Murphy's (1985) for $B(H)$)
If a C^{*}-algebra \mathcal{A}^{+}is the span of it projections with control on the coefficients and has $R R(\mathcal{A})=0$, then every positive invertible is PCP.

Beyond invertibles:

Lemma
Let \mathcal{A} have the property that positive invertibles in any corner rAr are $P C P$. If $b:=\alpha p \oplus a$ with $\alpha>\|a\|$ and $a=q a q \geq 0, q \precsim p$, then b is $P C P$.

This lemma is the essential tool for attacking the general PCP problem.

First step: commutators

Theorem
If $b \in \mathcal{A}$ and $\tau(b)=0 \quad \forall \tau \in T(\mathcal{A})$, then b is the sum of 2 commutators (with control on their norms.)

First step: commutators

Theorem
If $b \in \mathcal{A}$ and $\tau(b)=0 \quad \forall \tau \in T(\mathcal{A})$, then b is the sum of 2 commutators (with control on their norms.)

This theorem holds even when $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))=\infty$.

Ingredients in the proof

- Embed in \mathcal{A} a unital simple AH -algebra \mathcal{C} with real rank zero and dimension growth bounded by 3 and same K-invariants (Lin (2001), Elliott\& Gong, Gong (1996, 1997,1998)).
(Here is the only place where we use separability.)

Ingredients in the proof

- Embed in \mathcal{A} a unital simple AH -algebra \mathcal{C} with real rank zero and dimension growth bounded by 3 and same K-invariants (Lin (2001), Elliott\& Gong, Gong (1996, 1997,1998)). (Here is the only place where we use separability.)
- Extend the Fack (1982), Thomsen (1994) construction to this inductive limit case so to approximate b by a bounded number of commutators.

Ingredients in the proof

- Embed in \mathcal{A} a unital simple AH -algebra \mathcal{C} with real rank zero and dimension growth bounded by 3 and same K-invariants (Lin (2001), Elliott\& Gong, Gong (1996, 1997,1998)). (Here is the only place where we use separability.)
- Extend the Fack (1982), Thomsen (1994) construction to this inductive limit case so to approximate b by a bounded number of commutators.
- Use the Marcoux $(2002,2006)$ machinery to express b as the sum of commutators and then reduce their number to two. (Still keep control on the norms.)

From commutators to projections

- Marcoux (2002) proved that if in a C*-algebra there exist three mutually orthogonal projections p_{1}, p_{2} and p_{3} such that $1=p_{1}+p_{2}+p_{3}$ and $p_{i} \precsim 1-p_{i}$ for $1 \leq i \leq 3$, then every commutator is a linear combination of 84 projections, with control on the coefficients. (Commutators $=$ sums of certain nilpotents of order two=sums of idempotents $=($ by Davidson $)$ $=$ linear combinations of projections)

From commutators to projections

- Marcoux (2002) proved that if in a C*-algebra there exist three mutually orthogonal projections p_{1}, p_{2} and p_{3} such that $1=p_{1}+p_{2}+p_{3}$ and $p_{i} \precsim 1-p_{i}$ for $1 \leq i \leq 3$, then every commutator is a linear combination of 84 projections, with control on the coefficients. (Commutators $=$ sums of certain nilpotents of order two=sums of idempotents $=($ by Davidson $)$ $=$ linear combinations of projections)

This condition is easily satisfied in our case. Thus so far we have:

- every $b \in \mathcal{A}$ s.t. $\tau(b)=0$ for every tracial state τ is a linear combination of projections with control on the coefficients.

Beyond zero trace

- If there is a unique tracial state τ, then
$b=\tau(b) 1+(b-\tau(b) 1)$ is a linear combination of projections (just one...) plus a zero-trace element.

Beyond zero trace

- If there is a unique tracial state τ, then $b=\tau(b) 1+(b-\tau(b) 1)$ is a linear combination of projections (just one...) plus a zero-trace element.
- Using the density of $K_{o}(\mathcal{A})$ in the continuous affine functions on $T(\mathcal{A})$ (Blackadar (1982)) we get:
Lemma
If $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))<\infty$ then every element in \mathcal{A} is the sum of linear combination of projections plus an element in the kernel of all the traces.

Beyond zero trace

- If there is a unique tracial state τ, then $b=\tau(b) 1+(b-\tau(b) 1)$ is a linear combination of projections (just one...) plus a zero-trace element.
- Using the density of $K_{o}(\mathcal{A})$ in the continuous affine functions on $T(\mathcal{A})$ (Blackadar (1982)) we get:

Lemma

If $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))<\infty$ then every element in \mathcal{A} is the sum of linear combination of projections plus an element in the kernel of all the traces.

- These 3 steps conclude the proof. To recap: $b=$ linear combination of projections $+c, \tau(c)=0 \forall \tau \operatorname{in} T(\mathcal{A})$; $c=\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]$; $\left[x_{i}, y_{i}\right]=$ linear combination of projections; and all that with control of the coefficients.

Infinitely many extremal traces?

The condition that $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))<\infty$ is essential:

Infinitely many extremal traces?

The condition that $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))<\infty$ is essential:

Proposition

If $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))=\infty$ and the collection $D(\mathcal{A})$ of Murray-von Neumann equivalence classes of projections of \mathcal{A} is countable, then \mathcal{A} is not the linear span of its projections.

Infinitely many extremal traces?

The condition that $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))<\infty$ is essential:

Proposition
If $\operatorname{card}(\operatorname{Ext}(T(\mathcal{A}))=\infty$ and the collection $D(\mathcal{A})$ of Murray-von Neumann equivalence classes of projections of \mathcal{A} is countable, then \mathcal{A} is not the linear span of its projections.

The proof mimics the one that a Hamel basis of an infinite separable Banach space cannot be countable.

Finite nonunital C^{*}-algebras: obstruction to PCP

- When $b \in \mathcal{A}$, its range projection R_{b} exists in $\mathcal{A}^{* *}$ (it is an open projection).

Finite nonunital C^{*}-algebras: obstruction to PCP

- When $b \in \mathcal{A}$, its range projection R_{b} exists in $\mathcal{A}^{* *}$ (it is an open projection).
- Every (finite, faithful) trace τ has an extension $\bar{\tau}$ to a (not necessarily faithful nor finite) tracial weight on $\left(\mathcal{A}^{* *}\right)^{+}$ (Combes(1968)- Ortega, Rordam, Thiel (2011))

Finite nonunital C^{*}-algebras: obstruction to PCP

- When $b \in \mathcal{A}$, its range projection R_{b} exists in $\mathcal{A}^{* *}$ (it is an open projection).
- Every (finite, faithful) trace τ has an extension $\bar{\tau}$ to a (not necessarily faithful nor finite) tracial weight on $\left(\mathcal{A}^{* *}\right)^{+}$ (Combes(1968)- Ortega, Rordam, Thiel (2011))
- The condition that $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$ is necessary for b to be a linear combination of projections. Indeed:

Finite nonunital C^{*}-algebras: obstruction to PCP

- When $b \in \mathcal{A}$, its range projection R_{b} exists in $\mathcal{A}^{* *}$ (it is an open projection).
- Every (finite, faithful) trace τ has an extension $\bar{\tau}$ to a (not necessarily faithful nor finite) tracial weight on $\left(\mathcal{A}^{* *}\right)^{+}$ (Combes(1968)- Ortega, Rordam, Thiel (2011))
- The condition that $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$ is necessary for b to be a linear combination of projections. Indeed:
$b=\sum \lambda_{j} p_{j} \Rightarrow \bar{\tau}\left(R_{b}\right) \leq \bar{\tau}\left(\bigvee p_{j}\right) \leq \sum \tau\left(p_{j}\right)<\infty \forall \tau \in T(\mathcal{A})$

Finite nonunital C^{*}-algebras: obstruction to PCP

- When $b \in \mathcal{A}$, its range projection R_{b} exists in $\mathcal{A}^{* *}$ (it is an open projection).
- Every (finite, faithful) trace τ has an extension $\bar{\tau}$ to a (not necessarily faithful nor finite) tracial weight on $\left(\mathcal{A}^{* *}\right)^{+}$ (Combes(1968)- Ortega, Rordam, Thiel (2011))
- The condition that $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$ is necessary for b to be a linear combination of projections. Indeed:
$b=\sum \lambda_{j} p_{j} \Rightarrow \bar{\tau}\left(R_{b}\right) \leq \bar{\tau}\left(\bigvee p_{j}\right) \leq \sum \tau\left(p_{j}\right)<\infty \forall \tau \in T(\mathcal{A})$
- The condition is also sufficient. But first, we need the PCP result.

Finite C*-algebras: N\&S condition for PCP

Theorem
Let \mathcal{A} be σ-unital, with all properties as above and $\operatorname{card}\left(\operatorname{Ext}(T(\mathcal{A}))<\infty\right.$. Then $b \in \mathcal{A}^{+}$is PCP if and only if $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$.(Always true if \mathcal{A} is unital.)

Finite C*-algebras: N\&S condition for PCP

Theorem
Let \mathcal{A} be σ-unital, with all properties as above and $\operatorname{card}\left(\operatorname{Ext}(T(\mathcal{A}))<\infty\right.$. Then $b \in \mathcal{A}^{+}$is PCP if and only if $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$.(Always true if \mathcal{A} is unital.)

Corollary
With \mathcal{A} as above, $b \in \mathcal{A}$ is a linear combination of projections in \mathcal{A} if and only if $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$.

Ingredients in the proof, part I

We can work in a corner where the "identity is not too far from the range projection".

Lemma
If $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$ then there is a trace preserving isomorphism

$$
\Psi: \operatorname{her}(b) \rightarrow \Psi(h e r(b)) \subset r \mathcal{A} r \text { for some } r \in \mathcal{A}, \tau(r)<2 \bar{\tau}\left(R_{b}\right)
$$

Ingredients in the proof, part I

We can work in a corner where the "identity is not too far from the range projection".

Lemma
If $\bar{\tau}\left(R_{b}\right)<\infty \forall \tau \in T(\mathcal{A})$ then there is a trace preserving isomorphism

$$
\Psi: \operatorname{her}(b) \rightarrow \Psi(\text { her }(b)) \subset r \mathcal{A} r \text { for some } r \in \mathcal{A}, \tau(r)<2 \bar{\tau}\left(R_{b}\right)
$$

Why solving PCP question first? Notice that

- decomposing $\Psi(b)$ into a PCP in $r \mathcal{A} r$, necessarily in $\Psi(\operatorname{her}(b))$ gives a PCP decomposition of b;
- decomposing $\Psi(b)$ into a linear combination of projections in $r \mathcal{A r}$ does not yield a decomposition of b.

Ingredients in the proof, part II

- Previous lemma permits to embed b into a unital algebra so that $\bar{\tau}\left(N_{b}\right)<\bar{\tau}\left(R_{b}\right) \forall \tau \in T(\mathcal{A})$.

Ingredients in the proof, part II

- Previous lemma permits to embed b into a unital algebra so that $\bar{\tau}\left(N_{b}\right)<\bar{\tau}\left(R_{b}\right) \forall \tau \in T(\mathcal{A})$.
- By Brown's interpolation theorem find projections $p \perp q$ in $T(\mathcal{A})$ with $N_{b} \leq q \precsim p \leq R_{b}$

Ingredients in the proof, part II

- Previous lemma permits to embed b into a unital algebra so that $\bar{\tau}\left(N_{b}\right)<\bar{\tau}\left(R_{b}\right) \forall \tau \in T(\mathcal{A})$.
- By Brown's interpolation theorem find projections $p \perp q$ in $T(\mathcal{A})$ with $N_{b} \leq q \precsim p \leq R_{b}$
- Use the key lemma that we have seen before:

Lemma

Let \mathcal{A} have the property that positive invertibles in any corner $r \mathcal{A} r$ are $P C P$. If $b:=\alpha p \oplus a$ with $\alpha>\|a\|$ and $a=q a q \geq 0, q \precsim p$, then b is $P C P$.

- Plus more work - the proof is technical.

THANK YOU FOR YOUR ATTENTION

